REVERSIBLE HYDRIDE TRANSFER FROM 1-METHYL-1,4-DIHYDRONICOTINAMIDE (1,4-MeNDH) TO MeND<sup>+</sup> IODIDE YIELDING 1,6-MeNDH

Hiroshi MINATO,\* Takao ITO, and Michio KOBAYASHI
Department of Chemistry, Tokyo Metropolitan University, Fukazawa, Setagaya,
Tokyo 158

The reaction of 1-methyl-1,4-dihydronicotinamide (1,4-MeNDH) with  $\mathrm{MeND}^+$  in  $\mathrm{D_2O}$  at 34° was found to yield 1,6-MeNDH, and the reaction of 1,6-MeNDH with  $\mathrm{MeND}^+$  was found to yield 1,4-MeNDH. An equilibrium was established between 1,6-MeNDH(18%) and 1,4-MeNDH(82%) when either of the 1-methyldihydronicotinamides was mixed with a catalytic amount of  $\mathrm{MeND}^+$ .

Recently van Bergen, Mulder, and Kellogg reported <u>irreversible</u> hydride transfer from 1,2,6-trimethy1-3,5-dicarboethoxy-1,4-dihydropyridine( $I_a$ ) to the 2-position of 1,2,6-trimethy1-3,5-dicarboethoxypyridinium perchlorate(II) at 60°, forming 1,2,6-trimethy1-3,5-dicarboethoxy-1,2-dihydropyridine( $I_b$ ). We have found that 1-methy1-1,4-dihydronicotinamide(1,4-MeNDH) ( $I_a$ ), a compound as a model closer to NADH, transfers its hydride to the 6-position of MeND<sup>+</sup> iodide (2) <u>reversibly</u>.

When  $1_a$  (1 equiv) and 2 (0.05 equiv) were dissolved in  $D_2O$  at 34°, the PMR spectrum of the solution indicated the decrease of the concentration of  $1_a$  and the formation of 1,6-MeNDH ( $1_b$ ), whose concentration gradually increased ( $[1_b]/[1_a] = 3/97$ , 19/81, and 19/81 after 30, 1440, and 3000 min. respectively);  $1_a(D_2O)$ , 62.92 (CH<sub>3</sub>), 2.98-3.08 (CH<sub>2</sub>);  $1_b(D_2O)$ , 62.84 (CH<sub>3</sub>), 4.02-4.12(CH<sub>2</sub>). Because of complex spin couplings, the PMR absorptions of the ring hydrogens of  $1_a$  and  $1_b$  are complex, and this makes it difficult to recognize the formation of  $1_b$  in the presence of a greater amount of  $1_a$ .

However, the tarbon-13 NMR spectrum of the reaction mixture very clearly showed the appearance and increase of the concentration of  $\mathbf{1}_b$ . The Figure shows the  $^{13}$ CMR spectrum of the mixture after 50 hr at 34°. Chemical shifts were assigned by using the chemical shifts of related known compounds and the off-resonance proton decoupling technique. An authentic sample of  $\mathbf{1}_b$  was synthesized by applying the method described for the preparation of 1-propoxymethy1-1,6-NDH.

The reactions which took place in the mixture are probably represented by the following scheme.

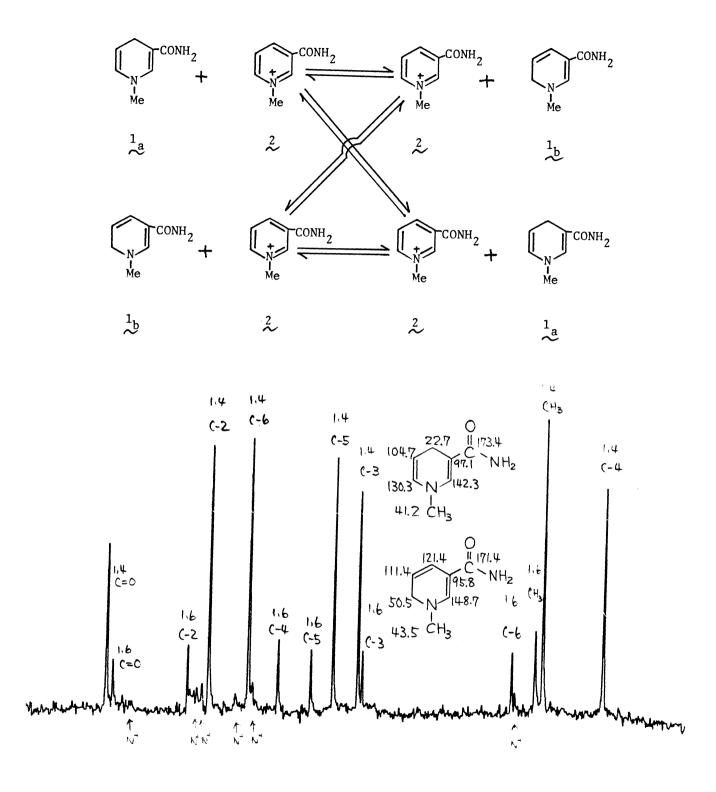



Figure.  $^{13}$ CMR spectrum of a mixture of  $^{1}$ <sub>a</sub> (1 equiv.) and  $^{2}$  (0.05 equiv.) in  $^{13}$ <sub>2</sub>O after 50 hr at 34°. (Chemical shifts values are in ppm downfield from TMS.Very small peaks are due to  $^{2}$ .)

The fact that an equilibrium was established between 1 and  $1_b$  indicates that  $1_b$  does reduce 2 and regenerate  $1_a$ . If the reaction  $(1_b + 2 \longrightarrow 2 + 1_a)$  did not take place, all the  $1_a$  must have been converted to  $1_b$  by the reaction  $(1_a + 2 \longrightarrow 2 + 1_b)$  after elapse of sufficient time. Van Bergen et al. reported that in the case of their Hantzsch esters the reaction  $(I_b + II \longrightarrow II + I_a)$  does not take place and all the  $I_a$  are converted to  $I_b$  quantitatively by the reaction  $(I_a + II \longrightarrow II + I_b)$ ; once  $I_b$  is formed, it remains as such and hydride can no longer escape from it.

$$\underbrace{ \overset{\text{EtO}_2\text{C}}{\text{Me}} \overset{\text{CO}_2\text{Et}}{\text{Me}} + \overset{\text{EtO}_2\text{C}}{\text{Me}} \overset{\text{CO}_2\text{Et}}{\text{Me}} \overset{\text{CO}_2\text{Et}$$

In order to ascertain that  $1_b$  does reduce 2, a mixture of  $1_b$  (0.49 equiv) and  $1_a$  (0.51 equiv) was mixed with 2 (0.05 equiv) in  $D_2$ 0 at 34°. The composition changed as expected ( $[i_b]/[1_a] = 49/51$ , 42/58, 33/67, 17/83, and 17/83 after 0, 7, 80, 1170, and 1530 min, respectively). In the absence of 2, the composition of the mixture of  $1_b$  and  $1_a$  did not change after 1530 min.

of the mixture of  $l_b$  and  $l_a$  did not change after 1530 min.

It is of interest to note that methylene hydride at C-4 ( $l_a$  and  $l_a$ ) and methylene hydride at C-6 ( $l_b$ ) are usable for reduction but methine hydride of  $l_b$  at C-2 is not usable for reduction. The inertness of the methine hydride of  $l_b$  even at 60° is probably ascribable to steric hindrance, and it seems reasonable that the methylene hydride of  $l_b$  which is not sterically hindered is labile at 34°.

Since the structure of NADH in living cells is closely related to that of 1,4-MeNDH, it is possible that NADH in living cells transfers part of its hydride to the 6-position of NAD<sup>+</sup> forming 1,6-NADH, and an equilibrium similar to that between 1,4- and 1,6-MeNDH is established between 1,4-NADH (major) and 1,6-NADH (minor), which possess sterically unhindered methylene hydride at C-4 and C-6, respectively. On the other hand, if NADH in living cells does not contain any 1,6-NADH at all, the prevention of the hydride transfer to the 6-position must be ascribed to actions of enzymes.

The results of our investigation point out that (1) the 6-position of 2 does accept a hydride at 34°, (2) the 1,6-MeNDH produced does reduce another molecule of 2, and (3) an equilibrium is established between 1,4-MeNDH (82%) and 1,6-MeNDH (18%) when a small amount of MeND<sup>+</sup> is present in the medium.

Ludowieg and Levy studied the reaction between 1,4-PrNDH (1-propy1-1,4-dihydronicotinamide) and PrND+,7 Although they clearly showed that the 4-hydride

(tritium) of 1,4-PrNDH is transferred to PrND<sup>+</sup>, they did not report the formation of 1.6-PrNDH, and only described that in mixtures left for a few hours at room temperature it was possible to identify a third component on paper chromatography. The component is most likely 1.6-PrNDH.

Fowler reported that an equilibrium mixture of unsubstituted N-methyldihydropyridine contains 7.7% of the 1,2-dihydro isomer. 8 This figure is reasonably compared with that in an equilibrium mixture of MeNDH (the 1,6-dihydro isomer, 18%).

## REFERENCES AND NOTES

- 1. T. J. van Bergen, T. Mulder, and R. M. Kellog, J. Am. Chem. Soc., 98, 1960 (1976).
- 2. Our assignment on 1,4-PhCH<sub>2</sub>NDH<sup>3</sup> was in agreement with that of Gase et al.,<sup>4</sup> which was published lately.
- 3. H. Minato, E. Yamazaki, and M. Kobayashi, Chem. Lett., 1976, 525.
- 4. R. A. Gase, G. Boxhoorn, and U. K. Pandit, Tetrahedron Lett., 1976, 2889.
- 5. A. C. Lovesey and W. C. Ross, J. Chem. Soc., (B), 1969, 192; the application of the method to the synthesis of 1,6-MeNDH resulted in the formation of a mixture of 1,6-MeNDH and 1,4-MeNDH ( $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ / $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$  = 49/51). The PMR and <sup>13</sup>CMR spectra of the mixture were consistent with the structures of 1 and 1b. Attempts for obtaining pure 1<sub>b</sub> were not successful.

  6. Since pure 1<sub>b</sub> is not available, <sup>5</sup> a mixture of 1<sub>b</sub> and 1<sub>a</sub> was used.

  7. J. Ludowieg and A. Levy, Biochemistry, 3, 373 (1964).

- 8. F. W. Fowler, J. Am. Chem. Soc., 94, 5926 (1972).

(Received September 30, 1976)